Particle Size To Screen Mesh Conversion Chart

This table is designed to guide you in deciding what mesh type is appropriate for your application. While a specific mesh can have the same number of wires/inch as another, a different wire diameter will alter the aperture as well as the \% open area. For instance, one of the tradeoffs between choosing a TBC grade over a Market Grade with the same aperture is a greater throughput but at the same time potentially shorter effective screen life.
Contact the Gerard Daniel customer service team for help choosing the right mesh for your application!

US Standard				Tensile Bolting Cloth				Mill Grade					Market Grade					Clear Opening		
$\begin{aligned} & \text { Std. } \\ & \text { Sieve } \end{aligned}$	Open Inches	Open $\mu \mathrm{m}$	Mesh TBC	$\begin{array}{r} \text { Op } \\ \text { Inches } \end{array}$	ning Microns	Wire Dia.	$\begin{aligned} & \text { \% Open } \\ & \text { Area } \end{aligned}$	Mesh Mill Gr.	Opening		Wire Dia.	$\begin{aligned} & \text { \% Open } \\ & \text { Area } \end{aligned}$	$\begin{aligned} & \text { Mesh } \\ & \text { Mrk. Gr. } \end{aligned}$	Opening		Wire Dia.	$\begin{gathered} \text { \% Open } \\ \text { Area } \end{gathered}$	$\begin{aligned} & \text { Clear } \\ & \text { Open } \end{aligned}$	Wire Dia.	$\begin{aligned} & \text { \% Open } \\ & \text { Area } \end{aligned}$
35	. 0197	500																		
			40	. 0185	470	. 0065	54.8\%	36	. 0188	478	. 0090	45.8\%								
			42	. 0183	465	. 0055	59.1\%	38	. 0178	452	. 0090	45.8\%								
			43	. 0188	476	. 0045	65.0\%				. 0085	45.8\%								
			43	. 0183	464	. 0050	61.6\%													
			44	. 0172	437	. 0055	57.4\%						35	. 0176	448	. 0110	37.9\%			
			46	. 0162	411	. 0055	55.8\%	40	. 0165	419	. 0085	43.6\%				43.6\%				
40	. 0167	425																		
			48	. 0153	389	. 0055	54.2\%						40	. 0150	382	. 0100	36.0\%			
			50	. 0145	368	. 0055	52.6\%	45	. 0142	361	. 0080	40.8\%								
			52	. 0137	348	. 0055	51.0\%													
45	. 0140	355																		
			54	. 0130	330	. 0055	49.4\%													
			56	. 0139	352	. 0040	60.2\%													
			58	. 0127	323	. 0045	54.6\%	50	. 0125	318	. 0075	39.1\%								
			60	. 0122	310	. 0045	53.3\%													
			62	. 0116	295	. 0045	51.7\%													
50	. 0118	300																		
			64	. 0111	282	. 0045	50.7\%	55	. 0112	284	. 0070	37.9\%	50	. 0110	279	. 0090	30.3\%			
			66	. 0117	296	. 0035	59.1\%													
			66	. 0107	271	. 0045	49.4\%													
			70	. 0106	269	. 0037	54.9\%													
			72	. 0102	259	. 0037	53.8\%	60	. 0102	259	. 0065	37.5\%								
			74	. 0098	249	. 0037	52.7\%													
60	. 0098	250																		
			76	. 0095	241	. 0037	51.7\%													
			78	. 0091	231	. 0037	50.6\%						60	. 0092	234	. 0075	30.5\%			
			80	. 0088	224	. 0037	49.6\%													
			84	. 0084	213	. 0035	49.8\%													
70	. 0083	212																		
			88	. 0079	201	. 0035	57.9\%													
			90	. 0076	193	. 0035	47.8\%													
80	. 0071	180	94	. 0071	180	. 0035	45.0\%						80	. 0070	178	. 0055	31.4\%			
			105	. 0065	165	. 0030	46.9\%													
100	. 0059	150	120	. 0058	147	. 0025	47.3\%						100	. 0055	140	. 0045	30.3\%			
			135	. 0051	130	. 0023	47.5\%													
120	. 0049	125	145	. 0047	119	. 0022	46.4\%						120	. 0047	120	. 0036	30.5\%			
140	. 0042	106	165	. 0042	107	. 0019	47.1\%						150	. 0041	104	. 0026	37.9\%			
170	. 0035	90	200	. 0034	86	. 0016	46.2\%						170	. 0035	89	. 0024	35.4\%			
200	. 0030	75	230	. 0029	74	. 0014	46.0\%						200	. 0029	74	. 0021	33.6\%			
230	. 0025	63											250	. 0024	61	. 0016	36.0\%			
270	. 0021	53	300	. 0022	56	. 0012	42.0\%						270	. 0021	53	. 0016	32.0\%			
325	. 0018	45											325	. 0017	43	. 0014	30.5\%			
400	. 0015	38											400	. 0015	38	. 0100	36.0\%			
500	. 0010	25											500	. 0010	25	. 0010	25.0\%			
635	. 0008	20											635	. 0008	20	. 0008	25.0\%			

